Lax Distributive Laws for Topology, I
نویسندگان
چکیده
For a quantaloid Q, considered as a bicategory, Walters introduced categories enriched in Q. Here we extend the study of monad-quantale-enriched categories of the past fifteen years by introducing monad-quantaloid-enriched categories. We do so by making lax distributive laws of a monad T over the discrete presheaf monad of the small quantaloid Q the primary data of the theory, rather than the lax monad extensions of T to the category of Q-relations that they equivalently describe. The central piece of the paper establishes a Galois correspondence between such lax distributive laws and lax Eilenberg-Moore T-algebra structures on the set of discrete presheaves over the object set of Q. We give a precise comparison of these structures with the more restrictive notion introduced by Hofmann in the case of a commutative quantale, called natural topological theories here, and describe the lax monad extensions introduced by him as minimal. Throughout the paper, a variety of old and new examples of ordered, metric and topological structures illustrate the theory developed, which includes the consideration of algebraic functors and change-of-base functors in full generality.
منابع مشابه
Lax Distributive Laws for Topology, Ii
For a small quantaloid Q we consider four fundamental 2-monads T on Q-Cat, given by the presheaf 2-monad P and the copresheaf 2-monad P†, as well as their two composite 2-monads, and establish that they all laxly distribute over P. These four 2-monads therefore admit lax extensions to the category Q-Dist of Q-categories and their distributors. We characterize the corresponding (T,Q)-categories ...
متن کاملDistributive laws in programming structures
Generalised Distributive laws in Computer Science are rules governing the transformation of one programming structure into another. In programming, they are programs satisfying certain formal conditions. Their importance has been to date documented in several isolated cases by diverse formal approaches. These applications have always meant leaps in understanding the nature of the subject. Howev...
متن کاملIterated distributive laws
We give a framework for combining n monads on the same category via distributive laws satisfying Yang-Baxter equations, extending the classical result of Barr and Wells which combines two monads via one distributive law. We show that this corresponds to iterating n-times the process of taking the 2-category of monads in a 2-category, extending the result of Street characterising distributive la...
متن کاملMonad Compositions I: General Constructions and Recursive Distributive Laws
New techniques for constructing a distributive law of a monad over another are studied using submonads, quotient monads, product monads, recursively-defined distributive laws, and linear equations. Sequel papers will consider distributive laws in closed categories and will construct monad approximations for compositions which fail to be a monad.
متن کاملQuantale-valued fuzzy Scott topology
The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...
متن کامل